Files
tide-display/ePaper-ESP-IDF/components/lilygo-epd47/epd_driver.c
Peter Siegmund 09037c6df0 initial ESP-IDF project
Signed-off-by: Peter Siegmund <peter@rdkr.com>
2024-05-29 23:03:43 +02:00

1062 lines
30 KiB
C

/******************************************************************************/
/*** include files ***/
/******************************************************************************/
#include "epd_driver.h"
#include "ed047tc1.h"
#include <freertos/FreeRTOS.h>
#include <freertos/queue.h>
#include <freertos/semphr.h>
#include <freertos/task.h>
#include <esp_assert.h>
#include <esp_heap_caps.h>
#include <esp_log.h>
#include <esp_types.h>
#include <xtensa/core-macros.h>
#include <string.h>
/******************************************************************************/
/*** macro definitions ***/
/******************************************************************************/
/**
* @brief number of bytes needed for one line of EPD pixel data.
*/
#define EPD_LINE_BYTES EPD_WIDTH / 4
#define CLEAR_BYTE 0B10101010
#define DARK_BYTE 0B01010101
#ifndef _swap_int
#define _swap_int(a, b) \
{ \
int32_t t = a; \
a = b; \
b = t; \
}
#endif
/******************************************************************************/
/*** type definitions ***/
/******************************************************************************/
typedef struct
{
uint8_t *data_ptr;
SemaphoreHandle_t done_smphr;
Rect_t area;
int32_t frame;
DrawMode_t mode;
} OutputParams;
/******************************************************************************/
/*** local function prototypes ***/
/******************************************************************************/
/**
* @brief Reorder the output buffer to account for I2S FIFO order.
*/
static void reorder_line_buffer(uint32_t *line_data);
/**
* @brief output a row to the display.
*/
static void write_row(uint32_t output_time_dus);
/**
* @brief skip a display row
*/
static void skip_row(uint8_t pipeline_finish_time);
static void IRAM_ATTR reset_lut(uint8_t *lut_mem, DrawMode_t mode);
static void IRAM_ATTR update_LUT(uint8_t *lut_mem, uint8_t k, DrawMode_t mode);
/**
* @brief bit-shift a buffer `shift` <= 7 bits to the right.
*/
static void IRAM_ATTR bit_shift_buffer_right(uint8_t *buf, uint32_t len, int32_t shift);
static void IRAM_ATTR nibble_shift_buffer_right(uint8_t *buf, uint32_t len);
static void IRAM_ATTR provide_out(OutputParams *params);
static void IRAM_ATTR feed_display(OutputParams *params);
static void epd_fill_circle_helper(int32_t x0, int32_t y0, int32_t r, int32_t corners, int32_t delta,
uint8_t color, uint8_t *framebuffer);
/******************************************************************************/
/*** exported variables ***/
/******************************************************************************/
/******************************************************************************/
/*** local variables ***/
/******************************************************************************/
/**
* @brief status tracker for row skipping
*/
static uint32_t skipping;
/* 4bpp Contrast cycles in order of contrast (Darkest first). */
static const int32_t contrast_cycles_4[15] = {30, 30, 20, 20, 30, 30, 30, 40, 40, 50, 50, 50, 100, 200, 300};
static const int32_t contrast_cycles_4_white[15] = {10, 10, 8, 8, 8, 8, 8, 10, 10, 15, 15, 20, 20, 100, 300};
// Heap space to use for the EPD output lookup table, which
// is calculated for each cycle.
static uint8_t *conversion_lut;
static QueueHandle_t output_queue;
static const DRAM_ATTR uint32_t lut_1bpp[256] = {
0x0000, 0x0001, 0x0004, 0x0005, 0x0010, 0x0011, 0x0014, 0x0015,
0x0040, 0x0041, 0x0044, 0x0045, 0x0050, 0x0051, 0x0054, 0x0055,
0x0100, 0x0101, 0x0104, 0x0105, 0x0110, 0x0111, 0x0114, 0x0115,
0x0140, 0x0141, 0x0144, 0x0145, 0x0150, 0x0151, 0x0154, 0x0155,
0x0400, 0x0401, 0x0404, 0x0405, 0x0410, 0x0411, 0x0414, 0x0415,
0x0440, 0x0441, 0x0444, 0x0445, 0x0450, 0x0451, 0x0454, 0x0455,
0x0500, 0x0501, 0x0504, 0x0505, 0x0510, 0x0511, 0x0514, 0x0515,
0x0540, 0x0541, 0x0544, 0x0545, 0x0550, 0x0551, 0x0554, 0x0555,
0x1000, 0x1001, 0x1004, 0x1005, 0x1010, 0x1011, 0x1014, 0x1015,
0x1040, 0x1041, 0x1044, 0x1045, 0x1050, 0x1051, 0x1054, 0x1055,
0x1100, 0x1101, 0x1104, 0x1105, 0x1110, 0x1111, 0x1114, 0x1115,
0x1140, 0x1141, 0x1144, 0x1145, 0x1150, 0x1151, 0x1154, 0x1155,
0x1400, 0x1401, 0x1404, 0x1405, 0x1410, 0x1411, 0x1414, 0x1415,
0x1440, 0x1441, 0x1444, 0x1445, 0x1450, 0x1451, 0x1454, 0x1455,
0x1500, 0x1501, 0x1504, 0x1505, 0x1510, 0x1511, 0x1514, 0x1515,
0x1540, 0x1541, 0x1544, 0x1545, 0x1550, 0x1551, 0x1554, 0x1555,
0x4000, 0x4001, 0x4004, 0x4005, 0x4010, 0x4011, 0x4014, 0x4015,
0x4040, 0x4041, 0x4044, 0x4045, 0x4050, 0x4051, 0x4054, 0x4055,
0x4100, 0x4101, 0x4104, 0x4105, 0x4110, 0x4111, 0x4114, 0x4115,
0x4140, 0x4141, 0x4144, 0x4145, 0x4150, 0x4151, 0x4154, 0x4155,
0x4400, 0x4401, 0x4404, 0x4405, 0x4410, 0x4411, 0x4414, 0x4415,
0x4440, 0x4441, 0x4444, 0x4445, 0x4450, 0x4451, 0x4454, 0x4455,
0x4500, 0x4501, 0x4504, 0x4505, 0x4510, 0x4511, 0x4514, 0x4515,
0x4540, 0x4541, 0x4544, 0x4545, 0x4550, 0x4551, 0x4554, 0x4555,
0x5000, 0x5001, 0x5004, 0x5005, 0x5010, 0x5011, 0x5014, 0x5015,
0x5040, 0x5041, 0x5044, 0x5045, 0x5050, 0x5051, 0x5054, 0x5055,
0x5100, 0x5101, 0x5104, 0x5105, 0x5110, 0x5111, 0x5114, 0x5115,
0x5140, 0x5141, 0x5144, 0x5145, 0x5150, 0x5151, 0x5154, 0x5155,
0x5400, 0x5401, 0x5404, 0x5405, 0x5410, 0x5411, 0x5414, 0x5415,
0x5440, 0x5441, 0x5444, 0x5445, 0x5450, 0x5451, 0x5454, 0x5455,
0x5500, 0x5501, 0x5504, 0x5505, 0x5510, 0x5511, 0x5514, 0x5515,
0x5540, 0x5541, 0x5544, 0x5545, 0x5550, 0x5551, 0x5554, 0x5555
};
/******************************************************************************/
/*** exported functions ***/
/******************************************************************************/
void epd_init()
{
skipping = 0;
epd_base_init(EPD_WIDTH);
conversion_lut = (uint8_t *)heap_caps_malloc(1 << 16, MALLOC_CAP_8BIT);
assert(conversion_lut != NULL);
output_queue = xQueueCreate(64, EPD_WIDTH / 2);
}
void epd_push_pixels(Rect_t area, int16_t time, int32_t color)
{
uint8_t row[EPD_LINE_BYTES] = { 0 };
for (uint32_t i = 0; i < area.width; i++)
{
uint32_t position = i + area.x % 4;
uint8_t mask = (color ? CLEAR_BYTE : DARK_BYTE) & (0b00000011 << (2 * (position % 4)));
row[area.x / 4 + position / 4] |= mask;
}
reorder_line_buffer((uint32_t *)row);
epd_start_frame();
for (int32_t i = 0; i < EPD_HEIGHT; i++)
{
// before are of interest: skip
if (i < area.y)
{
skip_row(time);
// start area of interest: set row data
}
else if (i == area.y)
{
epd_switch_buffer();
memcpy(epd_get_current_buffer(), row, EPD_LINE_BYTES);
epd_switch_buffer();
memcpy(epd_get_current_buffer(), row, EPD_LINE_BYTES);
write_row(time * 10);
// load nop row if done with area
}
else if (i >= area.y + area.height)
{
skip_row(time);
// output the same as before
}
else
{
write_row(time * 10);
}
}
// Since we "pipeline" row output, we still have to latch out the last row.
write_row(time * 10);
epd_end_frame();
}
void epd_clear_area(Rect_t area)
{
epd_clear_area_cycles(area, 4, 50);
}
void epd_clear_area_cycles(Rect_t area, int32_t cycles, int32_t cycle_time)
{
const int16_t white_time = cycle_time;
const int16_t dark_time = cycle_time;
for (int32_t c = 0; c < cycles; c++)
{
for (int32_t i = 0; i < 4; i++)
{
epd_push_pixels(area, dark_time, 0);
}
for (int32_t i = 0; i < 4; i++)
{
epd_push_pixels(area, white_time, 1);
}
}
}
Rect_t epd_full_screen()
{
Rect_t area = {.x = 0, .y = 0, .width = EPD_WIDTH, .height = EPD_HEIGHT};
return area;
}
void epd_clear()
{
epd_clear_area(epd_full_screen());
}
void IRAM_ATTR calc_epd_input_4bpp(uint32_t *line_data, uint8_t *epd_input,
uint8_t k, uint8_t *conversion_lut)
{
uint32_t *wide_epd_input = (uint32_t *)epd_input;
uint16_t *line_data_16 = (uint16_t *)line_data;
// this is reversed for little-endian, but this is later compensated
// through the output peripheral.
for (uint32_t j = 0; j < EPD_WIDTH / 16; j++)
{
uint16_t v1 = *(line_data_16++);
uint16_t v2 = *(line_data_16++);
uint16_t v3 = *(line_data_16++);
uint16_t v4 = *(line_data_16++);
#if USER_I2S_REG
uint32_t pixel = conversion_lut[v1] << 16 |
conversion_lut[v2] << 24 |
conversion_lut[v3] |
conversion_lut[v4] << 8;
#else
uint32_t pixel = (conversion_lut[v1]) << 0 |
(conversion_lut[v2]) << 8 |
(conversion_lut[v3]) << 16 |
(conversion_lut[v4]) << 24;
#endif
wide_epd_input[j] = pixel;
}
}
void IRAM_ATTR calc_epd_input_1bpp(uint8_t *line_data, uint8_t *epd_input,
DrawMode_t mode)
{
uint32_t *wide_epd_input = (uint32_t *)epd_input;
// this is reversed for little-endian, but this is later compensated
// through the output peripheral.
for (uint32_t j = 0; j < EPD_WIDTH / 16; j++)
{
uint8_t v1 = *(line_data++);
uint8_t v2 = *(line_data++);
wide_epd_input[j] = (lut_1bpp[v1] << 16) | lut_1bpp[v2];
}
}
inline uint32_t min(uint32_t x, uint32_t y)
{
return x < y ? x : y;
}
void epd_draw_hline(int32_t x, int32_t y, int32_t length, uint8_t color, uint8_t *framebuffer)
{
for (int32_t i = 0; i < length; i++)
{
int32_t xx = x + i;
epd_draw_pixel(xx, y, color, framebuffer);
}
}
void epd_draw_vline(int32_t x, int32_t y, int32_t length, uint8_t color, uint8_t *framebuffer)
{
for (int32_t i = 0; i < length; i++)
{
int32_t yy = y + i;
epd_draw_pixel(x, yy, color, framebuffer);
}
}
void epd_draw_pixel(int32_t x, int32_t y, uint8_t color, uint8_t *framebuffer)
{
if (x < 0 || x >= EPD_WIDTH)
{
return;
}
if (y < 0 || y >= EPD_HEIGHT)
{
return;
}
uint8_t *buf_ptr = &framebuffer[y * EPD_WIDTH / 2 + x / 2];
if (x % 2)
{
*buf_ptr = (*buf_ptr & 0x0F) | (color & 0xF0);
}
else
{
*buf_ptr = (*buf_ptr & 0xF0) | (color >> 4);
}
}
void epd_draw_circle(int32_t x0, int32_t y0, int32_t r, uint8_t color, uint8_t *framebuffer)
{
int32_t f = 1 - r;
int32_t ddF_x = 1;
int32_t ddF_y = -2 * r;
int32_t x = 0;
int32_t y = r;
epd_draw_pixel(x0, y0 + r, color, framebuffer);
epd_draw_pixel(x0, y0 - r, color, framebuffer);
epd_draw_pixel(x0 + r, y0, color, framebuffer);
epd_draw_pixel(x0 - r, y0, color, framebuffer);
while (x < y)
{
if (f >= 0)
{
y--;
ddF_y += 2;
f += ddF_y;
}
x++;
ddF_x += 2;
f += ddF_x;
epd_draw_pixel(x0 + x, y0 + y, color, framebuffer);
epd_draw_pixel(x0 - x, y0 + y, color, framebuffer);
epd_draw_pixel(x0 + x, y0 - y, color, framebuffer);
epd_draw_pixel(x0 - x, y0 - y, color, framebuffer);
epd_draw_pixel(x0 + y, y0 + x, color, framebuffer);
epd_draw_pixel(x0 - y, y0 + x, color, framebuffer);
epd_draw_pixel(x0 + y, y0 - x, color, framebuffer);
epd_draw_pixel(x0 - y, y0 - x, color, framebuffer);
}
}
void epd_fill_circle(int32_t x0, int32_t y0, int32_t r, uint8_t color, uint8_t *framebuffer)
{
epd_draw_vline(x0, y0 - r, 2 * r + 1, color, framebuffer);
epd_fill_circle_helper(x0, y0, r, 3, 0, color, framebuffer);
}
static void epd_fill_circle_helper(int32_t x0, int32_t y0, int32_t r, int32_t corners, int32_t delta,
uint8_t color, uint8_t *framebuffer)
{
int32_t f = 1 - r;
int32_t ddF_x = 1;
int32_t ddF_y = -2 * r;
int32_t x = 0;
int32_t y = r;
int32_t px = x;
int32_t py = y;
delta++; // Avoid some +1's in the loop
while (x < y)
{
if (f >= 0)
{
y--;
ddF_y += 2;
f += ddF_y;
}
x++;
ddF_x += 2;
f += ddF_x;
// These checks avoid double-drawing certain lines, important
// for the SSD1306 library which has an INVERT drawing mode.
if (x < (y + 1))
{
if (corners & 1)
epd_draw_vline(x0 + x, y0 - y, 2 * y + delta, color, framebuffer);
if (corners & 2)
epd_draw_vline(x0 - x, y0 - y, 2 * y + delta, color, framebuffer);
}
if (y != py)
{
if (corners & 1)
epd_draw_vline(x0 + py, y0 - px, 2 * px + delta, color, framebuffer);
if (corners & 2)
epd_draw_vline(x0 - py, y0 - px, 2 * px + delta, color, framebuffer);
py = y;
}
px = x;
}
}
void epd_draw_rect(int32_t x, int32_t y, int32_t w, int32_t h, uint8_t color, uint8_t *framebuffer)
{
epd_draw_hline(x, y, w, color, framebuffer);
epd_draw_hline(x, y + h - 1, w, color, framebuffer);
epd_draw_vline(x, y, h, color, framebuffer);
epd_draw_vline(x + w - 1, y, h, color, framebuffer);
}
void epd_fill_rect(int32_t x, int32_t y, int32_t w, int32_t h, uint8_t color, uint8_t *framebuffer)
{
for (int32_t i = x; i < x + w; i++)
{
epd_draw_vline(i, y, h, color, framebuffer);
}
}
void epd_write_line(int32_t x0, int32_t y0, int32_t x1, int32_t y1, uint8_t color, uint8_t *framebuffer)
{
int32_t steep = abs(y1 - y0) > abs(x1 - x0);
if (steep)
{
_swap_int(x0, y0);
_swap_int(x1, y1);
}
if (x0 > x1)
{
_swap_int(x0, x1);
_swap_int(y0, y1);
}
int32_t dx, dy;
dx = x1 - x0;
dy = abs(y1 - y0);
int32_t err = dx / 2;
int32_t ystep;
if (y0 < y1)
{
ystep = 1;
}
else
{
ystep = -1;
}
for (; x0 <= x1; x0++)
{
if (steep)
{
epd_draw_pixel(y0, x0, color, framebuffer);
}
else
{
epd_draw_pixel(x0, y0, color, framebuffer);
}
err -= dy;
if (err < 0)
{
y0 += ystep;
err += dx;
}
}
}
void epd_draw_line(int32_t x0, int32_t y0, int32_t x1, int32_t y1, uint8_t color, uint8_t *framebuffer)
{
// Update in subclasses if desired!
if (x0 == x1)
{
if (y0 > y1)
_swap_int(y0, y1);
epd_draw_vline(x0, y0, y1 - y0 + 1, color, framebuffer);
}
else if (y0 == y1)
{
if (x0 > x1)
_swap_int(x0, x1);
epd_draw_hline(x0, y0, x1 - x0 + 1, color, framebuffer);
}
else
{
epd_write_line(x0, y0, x1, y1, color, framebuffer);
}
}
void epd_draw_triangle(int32_t x0, int32_t y0, int32_t x1, int32_t y1, int32_t x2, int32_t y2,
uint8_t color, uint8_t *framebuffer)
{
epd_draw_line(x0, y0, x1, y1, color, framebuffer);
epd_draw_line(x1, y1, x2, y2, color, framebuffer);
epd_draw_line(x2, y2, x0, y0, color, framebuffer);
}
void epd_fill_triangle(int32_t x0, int32_t y0, int32_t x1, int32_t y1, int32_t x2, int32_t y2,
uint8_t color, uint8_t *framebuffer)
{
int32_t a, b, y, last;
// Sort coordinates by Y order (y2 >= y1 >= y0)
if (y0 > y1)
{
_swap_int(y0, y1);
_swap_int(x0, x1);
}
if (y1 > y2)
{
_swap_int(y2, y1);
_swap_int(x2, x1);
}
if (y0 > y1)
{
_swap_int(y0, y1);
_swap_int(x0, x1);
}
if (y0 == y2)
{ // Handle awkward all-on-same-line case as its own thing
a = b = x0;
if (x1 < a)
a = x1;
else if (x1 > b)
b = x1;
if (x2 < a)
a = x2;
else if (x2 > b)
b = x2;
epd_draw_hline(a, y0, b - a + 1, color, framebuffer);
return;
}
int32_t dx01 = x1 - x0;
int32_t dy01 = y1 - y0;
int32_t dx02 = x2 - x0;
int32_t dy02 = y2 - y0;
int32_t dx12 = x2 - x1;
int32_t dy12 = y2 - y1;
int32_t sa = 0;
int32_t sb = 0;
// For upper part of triangle, find scanline crossings for segments
// 0-1 and 0-2. If y1=y2 (flat-bottomed triangle), the scanline y1
// is included here (and second loop will be skipped, avoiding a /0
// error there), otherwise scanline y1 is skipped here and handled
// in the second loop...which also avoids a /0 error here if y0=y1
// (flat-topped triangle).
if (y1 == y2)
last = y1; // Include y1 scanline
else
last = y1 - 1; // Skip it
for (y = y0; y <= last; y++)
{
a = x0 + sa / dy01;
b = x0 + sb / dy02;
sa += dx01;
sb += dx02;
/* longhand:
a = x0 + (x1 - x0) * (y - y0) / (y1 - y0);
b = x0 + (x2 - x0) * (y - y0) / (y2 - y0);
*/
if (a > b)
_swap_int(a, b);
epd_draw_hline(a, y, b - a + 1, color, framebuffer);
}
// For lower part of triangle, find scanline crossings for segments
// 0-2 and 1-2. This loop is skipped if y1=y2.
sa = (int32_t)dx12 * (y - y1);
sb = (int32_t)dx02 * (y - y0);
for (; y <= y2; y++)
{
a = x1 + sa / dy12;
b = x0 + sb / dy02;
sa += dx12;
sb += dx02;
/* longhand:
a = x1 + (x2 - x1) * (y - y1) / (y2 - y1);
b = x0 + (x2 - x0) * (y - y0) / (y2 - y0);
*/
if (a > b)
_swap_int(a, b);
epd_draw_hline(a, y, b - a + 1, color, framebuffer);
}
}
void epd_copy_to_framebuffer(Rect_t image_area, uint8_t *image_data,
uint8_t *framebuffer)
{
assert(image_data != NULL || framebuffer != NULL);
for (uint32_t i = 0; i < image_area.width * image_area.height; i++)
{
uint32_t value_index = i;
// for images of uneven width,
// consume an additional nibble per row.
if (image_area.width % 2)
{
value_index += i / image_area.width;
}
uint8_t val = (value_index % 2) ? (image_data[value_index / 2] & 0xF0) >> 4
: image_data[value_index / 2] & 0x0F;
int32_t xx = image_area.x + i % image_area.width;
if (xx < 0 || xx >= EPD_WIDTH)
{
continue;
}
int32_t yy = image_area.y + i / image_area.width;
if (yy < 0 || yy >= EPD_HEIGHT)
{
continue;
}
uint8_t *buf_ptr = &framebuffer[yy * EPD_WIDTH / 2 + xx / 2];
if (xx % 2)
{
*buf_ptr = (*buf_ptr & 0x0F) | (val << 4);
}
else
{
*buf_ptr = (*buf_ptr & 0xF0) | val;
}
}
}
void IRAM_ATTR epd_draw_grayscale_image(Rect_t area, uint8_t *data)
{
epd_draw_image(area, data, BLACK_ON_WHITE);
}
void IRAM_ATTR epd_draw_frame_1bit(Rect_t area, uint8_t *ptr,
DrawMode_t mode, int32_t time)
{
epd_start_frame();
uint8_t line[EPD_WIDTH / 8];
memset(line, 0, sizeof(line));
if (area.x < 0)
{
ptr += -area.x / 8;
}
int32_t ceil_byte_width = (area.width / 8 + (area.width % 8 > 0));
if (area.y < 0)
{
ptr += ceil_byte_width * -area.y;
}
for (int32_t i = 0; i < EPD_HEIGHT; i++)
{
if (i < area.y || i >= area.y + area.height)
{
skip_row(time);
continue;
}
uint8_t *lp;
bool shifted = 0;
if (area.width == EPD_WIDTH && area.x == 0)
{
lp = ptr;
ptr += EPD_WIDTH / 8;
}
else
{
uint8_t *buf_start = (uint8_t *)line;
uint32_t line_bytes = ceil_byte_width;
if (area.x >= 0)
{
buf_start += area.x / 8;
}
else
{
// reduce line_bytes to actually used bytes
line_bytes += area.x / 8;
}
line_bytes =
min(line_bytes, EPD_WIDTH / 8 - (uint32_t)(buf_start - line));
memcpy(buf_start, ptr, line_bytes);
ptr += ceil_byte_width;
// mask last n bits if width is not divisible by 8
if (area.width % 8 != 0 && ceil_byte_width + 1 < EPD_WIDTH)
{
uint8_t mask = 0;
for (int32_t s = 0; s < area.width % 8; s++)
{
mask = (mask << 1) | 1;
}
*(buf_start + line_bytes - 1) &= mask;
}
if (area.x % 8 != 0 && area.x < EPD_WIDTH)
{
// shift to right
shifted = true;
bit_shift_buffer_right(
buf_start,
min(line_bytes + 1,
(uint32_t)line + EPD_WIDTH / 8 - (uint32_t)buf_start),
area.x % 8);
}
lp = line;
}
calc_epd_input_1bpp(lp, epd_get_current_buffer(), mode);
epd_output_row(time);
if (shifted)
{
memset(line, 0, sizeof(line));
}
}
if (!skipping)
{
epd_output_row(time);
}
epd_end_frame();
}
void IRAM_ATTR epd_draw_image(Rect_t area, uint8_t *data, DrawMode_t mode)
{
uint8_t frame_count = 15;
SemaphoreHandle_t fetch_sem = xSemaphoreCreateBinary();
SemaphoreHandle_t feed_sem = xSemaphoreCreateBinary();
vTaskDelay(10);
for (uint8_t k = 0; k < frame_count; k++)
{
OutputParams p1 = {
.area = area,
.data_ptr = data,
.frame = k,
.mode = mode,
.done_smphr = fetch_sem,
};
OutputParams p2 = {
.area = area,
.data_ptr = data,
.frame = k,
.mode = mode,
.done_smphr = feed_sem,
};
TaskHandle_t t1, t2;
xTaskCreatePinnedToCore((void (*)(void *))provide_out, "privide_out", 8192,
&p1, 10, &t1, 0);
xTaskCreatePinnedToCore((void (*)(void *))feed_display, "render", 8192, &p2,
10, &t2, 1);
xSemaphoreTake(fetch_sem, portMAX_DELAY);
xSemaphoreTake(feed_sem, portMAX_DELAY);
vTaskDelete(t1);
vTaskDelete(t2);
vTaskDelay(5);
}
vSemaphoreDelete(fetch_sem);
vSemaphoreDelete(feed_sem);
}
/******************************************************************************/
/*** local functions ***/
/******************************************************************************/
static void write_row(uint32_t output_time_dus)
{
// avoid too light output after skipping on some displays
if (skipping)
{
// vTaskDelay(20);
}
skipping = 0;
epd_output_row(output_time_dus);
}
static void skip_row(uint8_t pipeline_finish_time)
{
// output previously loaded row, fill buffer with no-ops.
if (skipping == 0)
{
epd_switch_buffer();
memset(epd_get_current_buffer(), 0, EPD_LINE_BYTES);
epd_switch_buffer();
memset(epd_get_current_buffer(), 0, EPD_LINE_BYTES);
epd_output_row(pipeline_finish_time);
// avoid tainting of following rows by
// allowing residual charge to dissipate
// vTaskDelay(10);
/*
unsigned counts = XTHAL_GET_CCOUNT() + 50 * 240;
while (XTHAL_GET_CCOUNT() < counts) {
};
*/
}
else if (skipping < 2)
{
epd_output_row(10);
}
else
{
// epd_output_row(5);
epd_skip();
}
skipping++;
}
static void reorder_line_buffer(uint32_t *line_data)
{
for (uint32_t i = 0; i < EPD_LINE_BYTES / 4; i++)
{
uint32_t val = *line_data;
*(line_data++) = val >> 16 | ((val & 0x0000FFFF) << 16);
}
}
static void IRAM_ATTR reset_lut(uint8_t *lut_mem, DrawMode_t mode)
{
switch (mode)
{
case BLACK_ON_WHITE:
memset(lut_mem, 0x55, (1 << 16));
break;
case WHITE_ON_BLACK:
case WHITE_ON_WHITE:
memset(lut_mem, 0xAA, (1 << 16));
break;
default:
ESP_LOGW("epd_driver", "unknown draw mode %d!", mode);
break;
}
}
static void IRAM_ATTR update_LUT(uint8_t *lut_mem, uint8_t k, DrawMode_t mode)
{
if (mode == BLACK_ON_WHITE || mode == WHITE_ON_WHITE)
{
k = 15 - k;
}
// reset the pixels which are not to be lightened / darkened
// any longer in the current frame
for (uint32_t l = k; l < (1 << 16); l += 16)
{
lut_mem[l] &= 0xFC;
}
for (uint32_t l = (k << 4); l < (1 << 16); l += (1 << 8))
{
for (uint32_t p = 0; p < 16; p++)
{
lut_mem[l + p] &= 0xF3;
}
}
for (uint32_t l = (k << 8); l < (1 << 16); l += (1 << 12))
{
for (uint32_t p = 0; p < (1 << 8); p++)
{
lut_mem[l + p] &= 0xCF;
}
}
for (uint32_t p = (k << 12); p < ((k + 1) << 12); p++)
{
lut_mem[p] &= 0x3F;
}
}
static void IRAM_ATTR bit_shift_buffer_right(uint8_t *buf, uint32_t len, int32_t shift)
{
uint8_t carry = 0x00;
for (uint32_t i = 0; i < len; i++)
{
uint8_t val = buf[i];
buf[i] = (val << shift) | carry;
carry = val >> (8 - shift);
}
}
static void IRAM_ATTR nibble_shift_buffer_right(uint8_t *buf, uint32_t len)
{
uint8_t carry = 0xF;
for (uint32_t i = 0; i < len; i++)
{
uint8_t val = buf[i];
buf[i] = (val << 4) | carry;
carry = (val & 0xF0) >> 4;
}
}
static void IRAM_ATTR provide_out(OutputParams *params)
{
uint8_t line[EPD_WIDTH / 2];
memset(line, 255, EPD_WIDTH / 2);
Rect_t area = params->area;
uint8_t *ptr = params->data_ptr;
if (params->frame == 0)
{
reset_lut(conversion_lut, params->mode);
}
update_LUT(conversion_lut, params->frame, params->mode);
if (area.x < 0)
{
ptr += -area.x / 2;
}
if (area.y < 0)
{
ptr += (area.width / 2 + area.width % 2) * -area.y;
}
for (int32_t i = 0; i < EPD_HEIGHT; i++)
{
if (i < area.y || i >= area.y + area.height)
{
continue;
}
uint32_t *lp;
bool shifted = false;
if (area.width == EPD_WIDTH && area.x == 0)
{
lp = (uint32_t *)ptr;
ptr += EPD_WIDTH / 2;
}
else
{
uint8_t *buf_start = (uint8_t *)line;
uint32_t line_bytes = area.width / 2 + area.width % 2;
if (area.x >= 0)
{
buf_start += area.x / 2;
}
else
{
// reduce line_bytes to actually used bytes
line_bytes += area.x / 2;
}
line_bytes =
min(line_bytes, EPD_WIDTH / 2 - (uint32_t)(buf_start - line));
memcpy(buf_start, ptr, line_bytes);
ptr += area.width / 2 + area.width % 2;
// mask last nibble for uneven width
if (area.width % 2 == 1 && area.x / 2 + area.width / 2 + 1 < EPD_WIDTH)
{
*(buf_start + line_bytes - 1) |= 0xF0;
}
if (area.x % 2 == 1 && area.x < EPD_WIDTH)
{
shifted = true;
// shift one nibble to right
nibble_shift_buffer_right(
buf_start, min(line_bytes + 1, (uint32_t)line + EPD_WIDTH / 2 -
(uint32_t)buf_start));
}
lp = (uint32_t *)line;
}
xQueueSendToBack(output_queue, lp, portMAX_DELAY);
if (shifted)
{
memset(line, 255, EPD_WIDTH / 2);
}
}
xSemaphoreGive(params->done_smphr);
vTaskDelay(portMAX_DELAY);
}
static void IRAM_ATTR feed_display(OutputParams *params)
{
Rect_t area = params->area;
const int32_t *contrast_lut = contrast_cycles_4;
switch (params->mode)
{
case WHITE_ON_WHITE:
case BLACK_ON_WHITE:
contrast_lut = contrast_cycles_4;
break;
case WHITE_ON_BLACK:
contrast_lut = contrast_cycles_4_white;
break;
}
epd_start_frame();
for (int32_t i = 0; i < EPD_HEIGHT; i++)
{
if (i < area.y || i >= area.y + area.height)
{
skip_row(contrast_lut[params->frame]);
continue;
}
uint8_t output[EPD_WIDTH / 2];
xQueueReceive(output_queue, output, portMAX_DELAY);
calc_epd_input_4bpp((uint32_t *)output, epd_get_current_buffer(),
params->frame, conversion_lut);
write_row(contrast_lut[params->frame]);
}
if (!skipping)
{
// Since we "pipeline" row output, we still have to latch out the last row.
write_row(contrast_lut[params->frame]);
}
epd_end_frame();
xSemaphoreGive(params->done_smphr);
vTaskDelay(portMAX_DELAY);
}
/******************************************************************************/
/*** END OF FILE ***/
/******************************************************************************/