Files
cinema-display/firmware/main/main.cpp
Peter Siegmund 918efcfa17
All checks were successful
Build and Push Multi-Arch Docker Image / build-and-push (push) Successful in 15m48s
show binary file, generated by server
Signed-off-by: Peter Siegmund <developer@mars3142.org>
2025-12-07 00:02:36 +01:00

248 lines
6.3 KiB
C++

#include <lgfx.h>
#include <lvgl.h>
#include "esp_err.h"
#include "esp_heap_caps.h"
#include "esp_log.h"
#include "esp_task_wdt.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "ff.h"
#include "storage.h"
#include <stdlib.h>
#define DISPLAY_WIDTH (480)
#define DISPLAY_HEIGHT (320)
const unsigned int lvBufferSize = DISPLAY_WIDTH * DISPLAY_HEIGHT / 10 * (LV_COLOR_DEPTH / 8);
uint8_t lvBuffer1[lvBufferSize];
uint8_t lvBuffer2[lvBufferSize];
static const char *TAG = "main";
LGFX tft;
// Image cache variables
static uint8_t *image_cache = NULL;
static size_t image_cache_size = 0;
static lv_image_dsc_t cached_image_dsc;
void setup_tft(void)
{
tft.begin();
tft.setRotation(1);
tft.setBrightness(255);
}
void flush(lv_display_t *display, const lv_area_t *area, unsigned char *data)
{
uint32_t w = lv_area_get_width(area);
uint32_t h = lv_area_get_height(area);
lv_draw_sw_rgb565_swap(data, w * h);
tft.pushImageDMA(area->x1, area->y1, w, h, (uint16_t *)data);
lv_display_flush_ready(display);
}
void my_touch_read(lv_indev_t *indev_driver, lv_indev_data_t *data)
{
uint16_t touchX, touchY;
bool touched = tft.getTouch(&touchX, &touchY);
if (!touched)
{
data->state = LV_INDEV_STATE_REL;
}
else
{
data->state = LV_INDEV_STATE_PR;
data->point.x = touchX;
data->point.y = touchY;
}
}
bool load_image_to_cache(const char *filename)
{
FIL file;
FRESULT result = f_open(&file, filename, FA_READ);
if (result != FR_OK)
{
ESP_LOGE(TAG, "Failed to open %s: %d", filename, result);
return false;
}
// Determine file size
FSIZE_t file_size = f_size(&file);
ESP_LOGI(TAG, "Image file size: %d bytes", (int)file_size);
// Allocate memory for entire image (prefer PSRAM)
image_cache = (uint8_t *)heap_caps_malloc(file_size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
if (image_cache == NULL)
{
ESP_LOGW(TAG, "Failed to allocate PSRAM, trying internal RAM");
// Fallback to internal RAM
image_cache = (uint8_t *)malloc(file_size);
}
if (image_cache == NULL)
{
ESP_LOGE(TAG, "Failed to allocate memory for image cache");
f_close(&file);
return false;
}
// Check which memory type is used
bool is_psram = esp_ptr_external_ram(image_cache);
ESP_LOGI(TAG, "Image cache allocated in %s: %d bytes", is_psram ? "PSRAM" : "internal RAM", (int)file_size);
// Read entire image in one go
UINT bytes_read;
result = f_read(&file, image_cache, file_size, &bytes_read);
f_close(&file);
if (result != FR_OK || bytes_read != file_size)
{
ESP_LOGE(TAG, "Failed to read image file completely");
free(image_cache);
image_cache = NULL;
return false;
}
image_cache_size = file_size;
// Read image header from first bytes (LVGL BIN format)
if (image_cache_size >= 4)
{
// Parse LVGL BIN header
lv_image_header_t *header = (lv_image_header_t *)image_cache;
// Set up image descriptor for LVGL with correct header data
cached_image_dsc.header.w = header->w;
cached_image_dsc.header.h = header->h;
cached_image_dsc.header.cf = header->cf;
cached_image_dsc.header.flags = header->flags;
cached_image_dsc.header.stride = header->stride;
cached_image_dsc.data_size = image_cache_size;
cached_image_dsc.data = image_cache;
ESP_LOGI(TAG, "Image header: %dx%d, format: %d", header->w, header->h, header->cf);
}
else
{
// Fallback for unknown format
cached_image_dsc.header.w = 0;
cached_image_dsc.header.h = 0;
cached_image_dsc.header.cf = LV_COLOR_FORMAT_UNKNOWN;
cached_image_dsc.header.flags = 0;
cached_image_dsc.header.stride = 0;
cached_image_dsc.data_size = image_cache_size;
cached_image_dsc.data = image_cache;
}
ESP_LOGI(TAG, "Image successfully loaded to cache (%d bytes)", (int)image_cache_size);
return true;
}
void esp_lv_log_print(lv_log_level_t level, const char *buf)
{
switch (level)
{
case LV_LOG_LEVEL_TRACE:
ESP_LOGV("LVGL", "%s", buf);
break;
case LV_LOG_LEVEL_INFO:
ESP_LOGI("LVGL", "%s", buf);
break;
case LV_LOG_LEVEL_WARN:
ESP_LOGW("LVGL", "%s", buf);
break;
case LV_LOG_LEVEL_ERROR:
ESP_LOGE("LVGL", "%s", buf);
break;
case LV_LOG_LEVEL_USER:
ESP_LOGI("LVGL", "%s", buf);
break;
case LV_LOG_LEVEL_NONE:
break;
}
}
void setup()
{
setup_tft();
lv_init();
lv_log_register_print_cb(esp_lv_log_print);
fs_mount();
static auto *display = lv_display_create(DISPLAY_WIDTH, DISPLAY_HEIGHT);
lv_display_set_color_format(display, LV_COLOR_FORMAT_RGB565);
lv_display_set_flush_cb(display, flush);
lv_display_set_buffers(display, lvBuffer1, lvBuffer2, lvBufferSize, LV_DISPLAY_RENDER_MODE_PARTIAL);
static auto *lvInput = lv_indev_create();
lv_indev_set_type(lvInput, LV_INDEV_TYPE_POINTER);
lv_indev_set_read_cb(lvInput, my_touch_read);
ESP_LOGI(TAG, "create image");
// Load image once into cache
if (load_image_to_cache("/poster.bin"))
{
lv_obj_t *img = lv_image_create(lv_screen_active());
lv_image_set_src(img, &cached_image_dsc); // Use cached image data
lv_obj_center(img);
}
else
{
ESP_LOGE(TAG, "Failed to load image from cache");
}
ESP_LOGI(TAG, "image created");
}
void loop()
{
lv_tick_inc(10);
lv_timer_handler();
vTaskDelay(pdMS_TO_TICKS(10));
}
void cleanup_image_cache(void)
{
if (image_cache != NULL)
{
// Use heap_caps_free since we used heap_caps_malloc
if (esp_ptr_external_ram(image_cache))
{
ESP_LOGI(TAG, "Freeing PSRAM image cache");
}
else
{
ESP_LOGI(TAG, "Freeing internal RAM image cache");
}
heap_caps_free(image_cache);
image_cache = NULL;
image_cache_size = 0;
ESP_LOGI(TAG, "Image cache cleaned up");
}
}
void lvgl_task(void *pvParameter)
{
setup();
while (1)
{
loop();
}
cleanup_image_cache();
fs_unmount();
}
extern "C" void app_main(void)
{
xTaskCreatePinnedToCore(lvgl_task, "lvgl_task", 8192, NULL, 5, NULL, 1);
}